Sparse representation utilizing tight frame for phase retrieval
نویسندگان
چکیده
منابع مشابه
tight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولPhase Retrieval for Sparse Signals
The aim of this paper is to build up the theoretical framework for the recovery of sparse signals from the magnitude of the measurement. We first investigate the minimal number of measurements for the success of the recovery of sparse signals without the phase information. We completely settle the minimality question for the real case and give a lower bound for the complex case. We then study t...
متن کاملSparse phase retrieval via group-sparse optimization
This paper deals with sparse phase retrieval, i.e., the problem of estimating a vector from quadratic measurements under the assumption that few components are nonzero. In particular, we consider the problem of finding the sparsest vector consistent with the measurements and reformulate it as a group-sparse optimization problem with linear constraints. Then, we analyze the convex relaxation of ...
متن کاملPhase Retrieval for Sparse Signals: Uniqueness Conditions
In a variety of fields, in particular those involving imaging and optics, we often measure signals whose phase is missing or has been irremediably distorted. Phase retrieval attempts the recovery of the phase information of a signal from the magnitude of its Fourier transform to enable the reconstruction of the original signal. A fundamental question then is: “Under which conditions can we uniq...
متن کاملNew Conditions for Sparse Phase Retrieval
We consider the problem of sparse phase retrieval, where a k-sparse signal x ∈ Rn (or C) is measured as y = |Ax|, where A ∈ R (or C respectively) is a measurement matrix and | · | is the element-wise absolute value. For a real signal and a real measurement matrix A, we show that m = 2k measurements are necessary and sufficient to recover x uniquely. For complex signal x ∈ Cn and A ∈ C, we show ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Advances in Signal Processing
سال: 2015
ISSN: 1687-6180
DOI: 10.1186/s13634-015-0288-9